Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Med Res Rev ; 43(1): 237-287, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36086898

RESUMO

The transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) is considered the master regulator of the phase II antioxidant response. It controls a plethora of cytoprotective genes related to oxidative stress, inflammation, and protein homeostasis, among other processes. Activation of these pathways has been described in numerous pathologies including cancer, cardiovascular, respiratory, renal, digestive, metabolic, autoimmune, and neurodegenerative diseases. Considering the increasing interest of discovering novel NRF2 activators due to its clinical application, initial efforts were devoted to the development of electrophilic drugs able to induce NRF2 nuclear accumulation by targeting its natural repressor protein Kelch-like ECH-associated protein 1 (KEAP1) through covalent modifications on cysteine residues. However, off-target effects of these drugs prompted the development of an innovative strategy, the search of KEAP1-NRF2 protein-protein interaction (PPI) inhibitors. These innovative activators are proposed to target NRF2 in a more selective way, leading to potentially improved drugs with the application for a variety of diseases that are currently under investigation. In this review, we summarize known KEAP1-NRF2 PPI inhibitors to date and the bases of their design highlighting the most important features of their respective interactions. We also discuss the preclinical pharmacological properties described for the most promising compounds.


Assuntos
Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Doenças Neurodegenerativas , Humanos , Inflamação/tratamento farmacológico , Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo
2.
Mol Divers ; 27(1): 341-356, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35467270

RESUMO

The Keap1-Nrf2 [Kelch-like ECH-associated protein-1-Nuclear factor erythroid-2-related factor-2] regulatory pathway plays a vital role in the protection of cells by regulating transcription of antioxidant and detoxification genes. Andrographolide (AGP) regulates the Keap1-Nrf2 pathway by inhibiting the Keap1 protein. To identify a more potent AGP analog as a therapeutic agent against Keap1 protein, in this work, cheminformatics analysis of 237 AGP analogs was carried out. Amongst these, five AGP analogs were screened through virtual screening followed by their molecular docking analysis against Keap1 protein, which revealed greater binding affinities (binding energy = - 4.15 to - 5.59 kcal/mol) for the shortlisted AGP analogs compared to AGP (binding energy = - 4.02 kcal/mol). Pharmacophore mapping indicated 14 spatial features, including 3 hydrogen bond acceptors and 11 hydrophobic, while ADME analysis established the potential of all five analogs as orally-active drug-like candidates based on Lipinski's rule of five. We also examined the chemical reactivity of AGP and the shortlisted AGP analogs using DFT analysis, which revealed that except for one analog (AGP_A2) all are more chemically reactive than AGP. Further, molecular dynamics simulation analysis and MM/GBSA evidenced that AGP_A1 (PubchemID-123361152), AGP_A3 (PubchemID-58209855) and AGP_A4 (PubchemID-101362374) are the best drug like candidates compared to AGP and have greater potential to activate the Keap1-Nrf2 pathway by inhibiting the Keap1 protein.


Assuntos
Quimioinformática , Diterpenos , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Proteína 1 Associada a ECH Semelhante a Kelch/química , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2/química , Diterpenos/farmacologia
3.
Ecotoxicol Environ Saf ; 249: 114376, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508821

RESUMO

Cadmium (Cd) is a ubiquitous toxic metal and environmental pollutant. Increasing studies have shown that Cd exposure increases the incidence of various endocrine system diseases, including thyrotoxicity reflected by thyroid structural damage and endocrine toxicity. However, the observed outcomes are complex and conflicting, leading to the mechanism of Cd-induced thyrotoxicity remaining obscure. In this study, 4-week-old male C57BL/6 mice were given 2 or 7 mg/kg Cadmium Chloride (CdCl2) intragastrically for 4 and 8 weeks, and the Cd-mediated thyrotoxicity was evaluated by determining alterations in thyroid structure and endocrine function, and alterations of oxidant stress, apoptosis, and pyroptosis. Our data showed that Cd exposure could reduce body weight and induce thyrotoxicity by impairing thyroid follicular morphology and endocrine function, accompanied by elevated oxidative stress and apoptosis, macrophage infiltration, and inflammatory cytokine secretion. Importantly, Cd significantly promoted thyroid follicular cell pyroptosis by increasing Nlrp3, Asc, Caspase-1, Gsdmd, IL-1ß, and IL-18 expression. Mechanistical analysis suggested that Cd treatment could inhibit antioxidant pathway by downregulating antioxidant response protein, Nrf2, and upregulating its negative feedback regulator, Keap1. Collectively, our in vivo findings suggest that Cd exposure could facilitate thyroid follicular cell pyroptosis by inhibiting Nrf2/Keap1 signaling, thereby disrupting thyroid tissue structure and endocrine function, which offers novel insights into the Cd-mediated detrimental consequences on thyroid homeostasis.


Assuntos
Antioxidantes , Cádmio , Exposição Ambiental , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Piroptose , Glândula Tireoide , Animais , Masculino , Camundongos , Antioxidantes/metabolismo , Cádmio/toxicidade , Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/metabolismo , Piroptose/efeitos dos fármacos , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/patologia
4.
Kidney360 ; 3(4): 687-699, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35721612

RESUMO

Background: Bardoxolone methyl activates nuclear factor erythroid 2-related factor 2 (Nrf2) via covalent binding and irreversible inhibition of Kelch-like ECH-associated protein 1 (Keap1), the negative regulator of Nrf2. Ongoing clinical trials of bardoxolone methyl show promising effects for patients with CKD. However, the direct inhibition of Keap1-Nrf2 protein-protein interaction (PPI) as an approach to activate Nrf2 is less explored. Methods: We developed a noncovalent Nrf2 activator UBE-1099, which highly selectively inhibits Keap1-Nrf2 PPI, and evaluated its efficacy on the progressive phenotype in an Alport syndrome mouse model (Col4a5-G5X). Results: Similar to bardoxolone methyl, UBE-1099 transiently increased proteinuria and reduced plasma creatinine in Alport mice. Importantly, UBE-1099 improved the glomerulosclerosis, renal inflammation, and fibrosis, and prolonged the life span of Alport mice. UBE-1099 ameliorated the dysfunction of Nrf2 signaling in the renal tissue of Alport mice. Moreover, transcriptome analysis in the glomerulus showed that UBE-1099 induced the expression of genes associated with the cell cycle and cytoskeleton, which may explain its unique mechanism of improvement such as glomerular morphologic change. Conclusions: UBE-1099 significantly ameliorates the progressive phenotype in Alport mice. Our results revealed the efficacy of Keap1-Nrf2 PPI inhibitor for glomerulosclerosis and present a potential therapeutic drug for CKD.


Assuntos
Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Nefrite Hereditária , Insuficiência Renal Crônica , Animais , Modelos Animais de Doenças , Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/agonistas , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/metabolismo , Nefrite Hereditária/tratamento farmacológico , Nefrite Hereditária/metabolismo , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia , Fenótipo
5.
J Med Chem ; 65(4): 3473-3517, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35108001

RESUMO

Upregulation of the transcription factor Nrf2 by inhibition of the interaction with its negative regulator Keap1 constitutes an opportunity for the treatment of disease caused by oxidative stress. We report a structurally unique series of nanomolar Keap1 inhibitors obtained from a natural product-derived macrocyclic lead. Initial exploration of the structure-activity relationship of the lead, followed by structure-guided optimization, resulted in a 100-fold improvement in inhibitory potency. The macrocyclic core of the nanomolar inhibitors positions three pharmacophore units for productive interactions with key residues of Keap1, including R415, R483, and Y572. Ligand optimization resulted in the displacement of a coordinated water molecule from the Keap1 binding site and a significantly altered thermodynamic profile. In addition, minor reorganizations of R415 and R483 were accompanied by major differences in affinity between ligands. This study therefore indicates the importance of accounting both for the hydration and flexibility of the Keap1 binding site when designing high-affinity ligands.


Assuntos
Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Compostos Macrocíclicos/farmacologia , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Animais , Sítios de Ligação , Hepatócitos/metabolismo , Humanos , Ligantes , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Ratos , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
6.
Eur J Pharmacol ; 912: 174620, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34752743

RESUMO

BACKGROUND: Epilepsy is a common chronic neurological disease. Recurrent seizures can cause irreversible brain damage. This study aimed to explore the regulation of Genistein on JAK2/STAT3 and Keap1/Nrf2 signaling pathway and the protective effects on brain injury after epilepsy. METHODS: Pentylenetetrazole (PTZ) was used to induce epilepsy in developing rats and Genistein was used for pretreatment of epilepsy. The seizure latency, grade scores and duration of the first generalized tonic-clonic seizure (GTCs) were recorded. Hippocampus tissue was sampled at 24 h post-epilepsy. Immunofluorescence staining was used to observe mature neurons, activated microglia and astrocytes in the hippocampal CA1 region. Western blot and qRT-PCR were used to determine the protein and mRNA levels of JAK2, STAT3, TNF-α, IL-1ß, Keap1, Nrf2, HO-1, NQO1, caspase3, Bax and Bcl2 in the hippocampus. RESULTS: Immunofluorescence showed that the number of neurons significantly decreased, and activated microglia and astrocytes significantly increased after epilepsy; Western blot and q-PCR showed that the expressions of JAK2, STAT3, TNF-α, IL-1ß, Keap1, caspase3 and Bax significantly increased, while Nrf2, HO-1, NQO1 and Bcl-2 were significantly reduced after epilepsy. These effects were reversed by Genistein treatment. Moreover, Genistein was found to prolong seizure latency and reduce seizure intensity score and duration of generalized tonic-clonic seizures(GTCs) CONCLUSIONS: Genistein can activate the Keap1/Nrf2 antioxidant stress pathway and attenuate the activation of microglia and astrocytes. Genistein also inhibits the JAK2-STAT3 inflammation pathway and expression of apoptotic proteins, and increases the number of surviving neurons, thus having a protective effect on epilepsy-induced brain damage.


Assuntos
Lesões Encefálicas/prevenção & controle , Genisteína/farmacologia , Janus Quinase 2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/farmacologia , Fator de Transcrição STAT3/metabolismo , Animais , Apoptose/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Lesões Encefálicas/etiologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Caspase 3/genética , Caspase 3/metabolismo , Modelos Animais de Doenças , Epilepsia/complicações , Epilepsia/metabolismo , Epilepsia/patologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Janus Quinase 2/antagonistas & inibidores , Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Masculino , Microglia/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Sprague-Dawley , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genética , Transdução de Sinais/efeitos dos fármacos , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
7.
Nat Chem Biol ; 17(11): 1168-1177, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34675420

RESUMO

The pace of progress in biomedical research directly depends on techniques that enable the quantitative interrogation of interactions between proteins and other biopolymers, or with their small-molecule ligands. Time-resolved Förster resonance energy transfer (TR-FRET) assay platforms offer high sensitivity and specificity. However, the paucity of accessible and biocompatible luminescent lanthanide complexes, which are essential reagents for TR-FRET-based approaches, and their poor cellular permeability have limited broader adaptation of TR-FRET beyond homogeneous and extracellular assay applications. Here, we report the development of CoraFluors, a new class of macrotricyclic terbium complexes, which are synthetically readily accessible, stable in biological media and exhibit photophysical and physicochemical properties that are desirable for biological studies. We validate the performance of CoraFluors in cell-free systems, identify cell-permeable analogs and demonstrate their utility in the quantitative domain-selective characterization of Keap1 ligands, as well as in isoform-selective target engagement profiling of HDAC1 inhibitors in live cells.


Assuntos
Complexos de Coordenação/química , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/farmacologia , Células HEK293 , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Estrutura Molecular
8.
J Med Chem ; 64(21): 15949-15972, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34705450

RESUMO

The NRF2-mediated cytoprotective response is central to cellular homoeostasis, and there is increasing interest in developing small-molecule activators of this pathway as therapeutics for diseases involving chronic oxidative stress. The protein KEAP1, which regulates NRF2, is a key point for pharmacological intervention, and we recently described the use of fragment-based drug discovery to develop a tool compound that directly disrupts the protein-protein interaction between NRF2 and KEAP1. We now present the identification of a second, chemically distinct series of KEAP1 inhibitors, which provided an alternative chemotype for lead optimization. Pharmacophoric information from our original fragment screen was used to identify new hit matter through database searching and to evolve this into a new lead with high target affinity and cell-based activity. We highlight how knowledge obtained from fragment-based approaches can be used to focus additional screening campaigns in order to de-risk projects through the rapid identification of novel chemical series.


Assuntos
Ácidos Carboxílicos/farmacologia , Descoberta de Drogas , Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Animais , Ácidos Carboxílicos/química , Linhagem Celular , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/metabolismo , Ligação Proteica , Pirazóis , Relação Estrutura-Atividade
9.
Nat Commun ; 12(1): 5156, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526504

RESUMO

R-loops are by-products of transcription that must be tightly regulated to maintain genomic stability and gene expression. Here, we describe a mechanism for the regulation of the R-loop-specific helicase, senataxin (SETX), and identify the ubiquitin specific peptidase 11 (USP11) as an R-loop regulator. USP11 de-ubiquitinates SETX and its depletion increases SETX K48-ubiquitination and protein turnover. Loss of USP11 decreases SETX steady-state levels and reduces R-loop dissolution. Ageing of USP11 knockout cells restores SETX levels via compensatory transcriptional downregulation of the E3 ubiquitin ligase, KEAP1. Loss of USP11 reduces SETX enrichment at KEAP1 promoter, leading to R-loop accumulation, enrichment of the endonuclease XPF and formation of double-strand breaks. Overexpression of KEAP1 increases SETX K48-ubiquitination, promotes its degradation and R-loop accumulation. These data define a ubiquitination-dependent mechanism for SETX regulation, which is controlled by the opposing activities of USP11 and KEAP1 with broad applications for cancer and neurological disease.


Assuntos
DNA Helicases/genética , DNA/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Enzimas Multifuncionais/genética , Processamento de Proteína Pós-Traducional , Proteostase/genética , RNA Helicases/genética , Tioléster Hidrolases/genética , Linhagem Celular , Senescência Celular/genética , DNA/química , DNA/metabolismo , DNA Helicases/antagonistas & inibidores , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HEK293 , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Enzimas Multifuncionais/antagonistas & inibidores , Enzimas Multifuncionais/metabolismo , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidade Proteica , Proteólise , RNA Helicases/antagonistas & inibidores , RNA Helicases/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Tioléster Hidrolases/antagonistas & inibidores , Tioléster Hidrolases/metabolismo , Ubiquitinação
10.
Biochem Biophys Res Commun ; 574: 110-117, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34461498

RESUMO

Nuclear factor E2-related factor 2 (Nrf2) activation could efficiently protect myocardial cells from oxygen glucose deprivation/re-oxygenation (OGDR). An ultra-large structure-based virtual screening has discovered iKeap1 as a novel, direct and potent Keap1 inhibitor. Here we found that iKeap1 efficiently activated Nrf2 signaling in H9c2 myocardial cells and primary murine myocardiocytes. iKeap1 induced Keap1-Nrf2 disassociation, cytosol Nrf2 protein stabilization and nuclear translocation. The antioxidant response element (ARE) activity and expression of Nrf2 cascade genes (HO1, NQO1 and GCLC) were increased in iKeap1-treated myocardial cells. In H9c2 cells and murine myocardiocytes, iKeap1 potently inhibited OGDR-induced oxidative injury by inhibiting reactive oxygen species (ROS) production, mitochondrial depolarization, lipid peroxidation and DNA damage. In addition, OGDR-induced myocardial cell death and apoptosis were largely ameliorated after pretreatment with the novel Keap1 inhibitor. Significantly, in H9c2 cells iKeap1-induced myocardial cytoprotection against OGDR was abolished with Nrf2 silencing or knockout (using CRISPR/Cas9 method). Moreover, CRISPR/Cas9-induced Keap1 knockout led to constitutive activation of Nrf2 cascade and inhibited OGDR-induced oxidative injury. Importantly, iKeap1 was unable to further protect Keap1-knockout H9c2 cells from OGDR. Together, iKeap1 activated Nrf2 signaling to protect myocardial cells from OGDR-induced oxidative injury and cell death.


Assuntos
Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Miócitos Cardíacos/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Animais , Células Cultivadas , Glucose/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Oxigênio/metabolismo , Substâncias Protetoras/síntese química , Substâncias Protetoras/química , Ratos , Transdução de Sinais/efeitos dos fármacos
11.
Inflammopharmacology ; 29(5): 1347-1355, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34373972

RESUMO

The natural pathway of antioxidant production is mediated through Kelch-like erythroid cell-derived protein with Cap and collar homology [ECH]-associated protein 1 (Keap1)-Nuclear factor erythroid 2-related factor 2 (Nrf2) system. Keap1 maintains a low level of Nrf2 by holding it in its protein complex. Also, Keap1 facilitates the degradation of Nrf2 by ubiquitination. In other words, Keap1 is a down-regulator of Nrf2. To boost the production of biological antioxidants, Keap1 has to be inhibited and Nrf2 has to be released. Liberated Nrf2 is in an unbound state, so it travels to the nucleus to stimulate the antioxidant response element (ARE) present on the antioxidant genes. AREs activate biosynthesis of biological antioxidants through genes responsible for the production of antioxidants. In some cases of coronavirus disease 2019 (COVID-19), there is an enormous release of cytokines. The antioxidant defense mechanism in the body helps in counteracting symptoms induced by the cytokine storm in COVID-19. So, boosting the production of antioxidants is highly desirable in such a condition. In this review article, we have compiled the role of Keap1-Nrf2 system in antioxidant production. We further propose its potential therapeutic use in managing cytokine storm in COVID-19.


Assuntos
COVID-19/metabolismo , COVID-19/terapia , Síndrome da Liberação de Citocina/metabolismo , Síndrome da Liberação de Citocina/terapia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Gerenciamento Clínico , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/agonistas , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia
12.
Cell Death Dis ; 12(7): 679, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34226516

RESUMO

An ultra-large structure-based virtual screening has discovered iKeap1 as a direct Keap1 inhibitor that can efficiently activate Nrf2 signaling. We here tested its potential effect against hydrogen peroxide (H2O2)-induced oxidative injury in osteoblasts. In primary murine and human osteoblasts, iKeap1 robustly activated Nrf2 signaling at micromole concentrations. iKeap1 disrupted Keap1-Nrf2 association, causing Nrf2 protein stabilization, cytosol accumulation and nuclear translocation in murine and human osteoblasts. The anti-oxidant response elements (ARE) activity and transcription of Nrf2-ARE-dependent genes (including HO1, NQO1 and GCLC) were increased as well. Significantly, iKeap1 pretreatment largely ameliorated H2O2-induced reactive oxygen species production, lipid peroxidation and DNA damage as well as cell apoptosis and programmed necrosis in osteoblasts. Moreover, dexamethasone- and nicotine-induced oxidative injury and apoptosis were alleviated by iKeap1. Importantly, Nrf2 shRNA or CRISPR/Cas9-induced Nrf2 knockout completely abolished iKeap1-induced osteoblast cytoprotection against H2O2. Conversely, CRISPR/Cas9-induced Keap1 knockout induced Nrf2 cascade activation and mimicked iKeap1-induced cytoprotective actions in murine osteoblasts. iKeap1 was ineffective against H2O2 in the Keap1-knockout murine osteoblasts. Collectively, iKeap1 activated Nrf2 signaling cascade to inhibit H2O2-induced oxidative injury and death of osteoblasts.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/metabolismo , Osteoblastos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Células Cultivadas , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/genética , Osteoblastos/metabolismo , Osteoblastos/patologia , Transdução de Sinais
13.
Bioorg Med Chem ; 44: 116300, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34252790

RESUMO

The protein-protein interaction (PPI) between kelch-like ECH-associated protein 1 (Keap1) and nuclear factor erythroid 2-related factor 2 (Nrf2) is recognized as a promising target for the prevention and treatment of oxidative stress-related inflammatory diseases. Herein, a series of novel 1,4-bis(arylsulfonamido)naphthalene-N,N'-diacetic acid analogs (7p-t and 8c) were designed to further explore the structure-activity relationships of the series. Their activities were measured first with a fluorescence polarization (FP) assay and more potent compounds were further evaluated using a more sensitive time-resolved fluorescence energy transfer (TR-FRET) assay, demonstrating IC50 values between 7.2 and 31.3 nM. In cytotoxicity studies, the naphthalene derivatives did not show noticeable toxicity to human HepG2-C8 and mouse brain BV-2 microglia cells. Among them, compound 7q bearing oxygen-containing fused rings was shown to significantly stimulate the cellular Nrf2 signaling pathway, including activation of antioxidant response element (ARE)-controlled expression of Nrf2 target genes and proteins. More importantly, 7q suppressed up-regulation of several pro-inflammatory cytokines in lipopolysaccharide (LPS)-challenged BV-2 microglial cells, representing a potential therapeutic application for controlling neuroinflammatory disorders.


Assuntos
Acetatos/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Naftalenos/farmacologia , Doenças Neuroinflamatórias/tratamento farmacológico , Acetatos/síntese química , Acetatos/química , Relação Dose-Resposta a Droga , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/química , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Estrutura Molecular , Fator 2 Relacionado a NF-E2/química , Fator 2 Relacionado a NF-E2/metabolismo , Naftalenos/síntese química , Naftalenos/química , Doenças Neuroinflamatórias/metabolismo , Ligação Proteica , Relação Estrutura-Atividade
14.
ACS Chem Biol ; 16(7): 1276-1287, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34152716

RESUMO

Inhibiting the Nrf2:Keap1 interaction to trigger cytoprotective gene expression is a promising treatment strategy for oxidative stress-related diseases. A short linear motif from Nrf2 has the potential to directly inhibit this protein-protein interaction, but poor stability and limited cellular uptake impede its therapeutic development. To address these limitations, we utilized an integrated molecular grafting strategy to re-engineer the Nrf2 motif. We combined the motif with an engineered non-native disulfide bond and a cell-penetrating peptide onto a single multifunctionalizable and ultrastable molecular scaffold, namely, the cyclotide MCoTI-II, resulting in the grafted peptide MCNr-2c. The engineered disulfide bond enhanced the conformational rigidity of the motif, resulting in a nanomolar affinity of MCNr-2c for Keap1. The cell-penetrating peptide led to an improved cellular uptake and increased ability to enhance the intracellular expression of two well-described Nrf2-target genes NQO1 and TALDO1. Furthermore, the stability of the scaffold was inherited by the grafted peptide, which became resistant to proteolysis in serum. Overall, we have provided proof-of-concept for a strategy that enables the encapsulation of multiple desired and complementary activities into a single molecular entity to design a Keap1-targeted inhibitor. We propose that this integrated approach could have broad utility for the design of peptide drug leads that require multiple functions and/or biopharmaceutical properties to elicit a therapeutic activity.


Assuntos
Peptídeos Penetradores de Células/farmacologia , Ciclotídeos/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Sequência de Aminoácidos , Sangue/metabolismo , Peptídeos Penetradores de Células/química , Ciclotídeos/química , Desenho de Fármacos , Células HeLa , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Masculino , Fator 2 Relacionado a NF-E2/química , Fator 2 Relacionado a NF-E2/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Estudo de Prova de Conceito , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica
15.
Metab Brain Dis ; 36(7): 1469-1479, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34129198

RESUMO

Kelch-like ECH associated-protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway is thought to be the key regulatory process defensing oxidative stress in multiple organs. Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) are both serious global health problems with high prevalence. A growing number of literatures have suggested a possible link between Keap1-Nrf2 signaling pathway and the pathological changes of T2DM, AD as well as T2DM-related AD. The current review mainly discusses how the damaged Keap1-Nrf2 signaling pathway leads to dysregulated redox molecular signaling, which may contribute to the pathogenesis of AD and T2DM-related cognitive dysfunction, as well as some compounds targeting this pathway. The further exploration of the mechanisms of this pathway could provide novel therapeutic strategies to improve cognitive function, through restoration of expression or translocation of Nrf2 and scavenging excessive free radicals.


Assuntos
Doença de Alzheimer/etiologia , Diabetes Mellitus Tipo 2/etiologia , Proteína 1 Associada a ECH Semelhante a Kelch/fisiologia , Fator 2 Relacionado a NF-E2/fisiologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Resistência à Insulina , Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Estresse Oxidativo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
16.
Eur J Med Chem ; 222: 113599, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34119834

RESUMO

Blocking the Kelch-like epichlorohydrin-related protein 1 (Keap1)-nuclear factor-erythroid 2 related factor 2 (Nrf2) pathway represents as a promising strategy to reduce oxidative stress and related-inflammation, including acute lung injury (ALI). NXPZ-2, a naphthalensulfonamide derivative, was previously reported to effectively inhibit the Keap1-Nrf2 protein-protein interaction (PPI) by our group. In the present work, a series of novel isothiocyanate-containing naphthalensulfonamides with the thioether, sulfoxide and sulfone moieties were designed by a structure-based molecular hybridization strategy using NXPZ-2 and the Nrf2 activator sulforaphane. They possessed good Keap1-Nrf2 PPI inhibitory activity and low cytotoxicity. The molecular docking study was performed to further explain the different activity of the thioether-, sulfoxide- and sulfone-containing naphthalensulfonamides. Among these new derivatives, 2-((N-(4-((N-(2-amino-2-oxoethyl)-4-((3-isothiocyanatopropyl)sulfinyl)phenyl)sulfonamido) naphthalen-1-yl)-4-methoxyphenyl)sulfonamido)acetamide (SCN-16) showed a good KD2 value of 0.455 µM to disrupt the PPI. In an LPS-induced peritoneal macrophage cell model, this compound could cause a significant increase in the nuclear Nrf2 protein, decrease in the cytosolic Nrf2 protein, and further elevate the downstream protective enzymes HO-1 and NQO-1, which were better than the lead compound NXPZ-2 and sulforaphane. What's more, the production of ROS and NO and the expression of pro-inflammatory cytokine TNF-α were also suppressed. In the LPS-induced ALI model, SCN-16 could significantly reduce LPS-induced inflammations and alleviate lung injuries by triggering Nrf2 nuclear translocation. Collectively, our results suggested that SCN-16 could be a novel lead compound targeting Keap1-Nrf2 protective pathway for clinical treatment of ALI.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Naftalenos/farmacologia , Substâncias Protetoras/farmacologia , Sulfonamidas/farmacologia , Lesão Pulmonar Aguda/metabolismo , Animais , Relação Dose-Resposta a Droga , Desenho de Fármacos , Feminino , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Fator 2 Relacionado a NF-E2/metabolismo , Naftalenos/síntese química , Naftalenos/química , Substâncias Protetoras/síntese química , Substâncias Protetoras/química , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química
17.
Commun Biol ; 4(1): 576, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990683

RESUMO

The Keap1-Nrf2 system is central for mammalian cytoprotection against various stresses and a drug target for disease prevention and treatment. One model for the molecular mechanisms leading to Nrf2 activation is the Hinge-Latch model, where the DLGex-binding motif of Nrf2 dissociates from Keap1 as a latch, while the ETGE motif remains attached to Keap1 as a hinge. To overcome the technical difficulties in examining the binding status of the two motifs during protein-protein interaction (PPI) simultaneously, we utilized NMR spectroscopy titration experiments. Our results revealed that latch dissociation is triggered by low-molecular-weight Keap1-Nrf2 PPI inhibitors and occurs during p62-mediated Nrf2 activation, but not by electrophilic Nrf2 inducers. This study demonstrates that Keap1 utilizes a unique Hinge-Latch mechanism for Nrf2 activation upon challenge by non-electrophilic PPI-inhibiting stimuli, and provides critical insight for the pharmacological development of next-generation Nrf2 activators targeting the Keap1-Nrf2 PPI.


Assuntos
Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Sítios de Ligação , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Ligação Proteica , Conformação Proteica
18.
Sci Rep ; 11(1): 7420, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795749

RESUMO

Protein-protein interactions (PPIs) are prospective but challenging targets for drug discovery, because screening using traditional small-molecule libraries often fails to identify hits. Recently, we developed a PPI-oriented library comprising 12,593 small-to-medium-sized newly synthesized molecules. This study validates a promising combined method using PPI-oriented library and ligand-based virtual screening (LBVS) to discover novel PPI inhibitory compounds for Kelch-like ECH-associated protein 1 (Keap1) and nuclear factor erythroid 2-related factor 2 (Nrf2). We performed LBVS with two random forest models against our PPI library and the following time-resolved fluorescence resonance energy transfer (TR-FRET) assays of 620 compounds identified 15 specific hit compounds. The high hit rates for the entire PPI library (estimated 0.56-1.3%) and the LBVS (maximum 5.4%) compared to a conventional screening library showed the utility of the library and the efficiency of LBVS. All the hit compounds possessed novel structures with Tanimoto similarity ≤ 0.26 to known Keap1/Nrf2 inhibitors and aqueous solubility (AlogP < 5). Reasonable binding modes were predicted using 3D alignment of five hit compounds and a Keap1/Nrf2 peptide crystal structure. Our results represent a new, efficient method combining the PPI library and LBVS to identify novel PPI inhibitory ligands with expanded chemical space.


Assuntos
Descoberta de Drogas/métodos , Proteína 1 Associada a ECH Semelhante a Kelch/química , Aprendizado de Máquina , Fator 2 Relacionado a NF-E2/química , Mapeamento de Interação de Proteínas , Sítios de Ligação , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Ligantes , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Ligação Proteica , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade
19.
J Med Chem ; 64(8): 4623-4661, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33818106

RESUMO

Targeting the protein-protein interaction (PPI) between nuclear factor erythroid 2-related factor 2 (Nrf2) and Kelch-like ECH-associated protein 1 (Keap1) is a potential therapeutic strategy to control diseases involving oxidative stress. Here, six classes of known small-molecule Keap1-Nrf2 PPI inhibitors were dissected into 77 fragments in a fragment-based deconstruction reconstruction (FBDR) study and tested in four orthogonal assays. This gave 17 fragment hits of which six were shown by X-ray crystallography to bind in the Keap1 Kelch binding pocket. Two hits were merged into compound 8 with a 220-380-fold stronger affinity (Ki = 16 µM) relative to the parent fragments. Systematic optimization resulted in several novel analogues with Ki values of 0.04-0.5 µM, binding modes determined by X-ray crystallography, and enhanced microsomal stability. This demonstrates how FBDR can be used to find new fragment hits, elucidate important ligand-protein interactions, and identify new potent inhibitors of the Keap1-Nrf2 PPI.


Assuntos
Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Sítios de Ligação , Cristalografia por Raios X , Estabilidade de Medicamentos , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Ligantes , Espectroscopia de Ressonância Magnética , Microssomos/metabolismo , Simulação de Dinâmica Molecular , Fator 2 Relacionado a NF-E2/química , Fator 2 Relacionado a NF-E2/metabolismo , Ligação Proteica , Mapas de Interação de Proteínas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície
20.
Pharmacol Res ; 167: 105577, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33774182

RESUMO

The recent outcry in the search for direct keap1 inhibitors requires a quicker and more effective drug discovery process which is an inherent property of the Computer Aided Drug Discovery (CADD) to bring drug candidates into the clinic for patient's use. This Keap1 (negative regulator of ARE master activator) is emerging as a therapeutic strategy to combat oxidative stress-orchestrated diseases. The advances in computer algorithm and compound databases require that we highlight the functionalities that this technology possesses that can be exploited to target Keap1-Nrf2 PPI. Therefore, in this review, we uncover the in silico approaches that had been exploited towards the identification of keap1 inhibition in the light of appropriate fitting with relevant amino acid residues, we found 3 and 16 other compounds that perfectly fit keap1 kelch pocket/domain. Our goal is to harness the parameters that could orchestrate keap1 surface druggability by utilizing hotspot regions for virtual fragment screening and identification of hotspot residues.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , Animais , Desenho de Fármacos , Descoberta de Drogas , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/química , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Modelos Moleculares , Fator 2 Relacionado a NF-E2/metabolismo , Domínios Proteicos/efeitos dos fármacos , Mapas de Interação de Proteínas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...